Abstract

We achieve the robust nonadiabatic holonomic two-qubit controlled gate in one step based on the ground-state blockade mechanism between two Rydberg atoms. By using the Rydberg-blockade effect and the Raman transition mechanism, we can produce the blockade effect of double occupation of the corresponding ground state, i.e., ground-state blockade, to encode the computational subspace into the ground state, thus effectively avoiding the spontaneous emission of the excited Rydberg state. On the other hand, the feature of geometric quantum computation independent of the evolutionary details makes the scheme robust to control errors. In this way, the controlled quantum gate constructed by our scheme not only greatly reduces the gate infidelity caused by spontaneous emission but is also robust to control errors.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.