Abstract

Secure hamming distance computation occupies a vital position in secure multiparty computation, which allows two parties to jointly compute the hamming distance without disclosing their respective private information. There are a lot of significant applications of secure hamming distance computation in private similarity determination fields, such as in biometric identification and e-commerce. In this paper, we present two quantum protocols for secure hamming distance computation. Protocol I subtly makes use of quantum CNOT operator and quantum Shift operator, which are simple quantum operators, while Protocol II utilizes the features of measurement-device-independent quantum key distribution, which can solve the security loopholes in practical realizations due to the imperfection in the detectors. Both two protocols can ensure the fairness of two parties and a higher security than the classical related protocols.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call