Abstract

The emerging field of synthetic biology moves beyond conventional genetic manipulation to construct novel life forms which do not originate in nature. We explore the problem of designing the provably shortest genomic sequence to encode a given set of genes by exploiting alternate reading frames. We present an algorithm for designing the shortest DNA sequence simultaneously encoding two given amino acid sequences. We show that the coding sequence of naturally occurring pairs of overlapping genes approach maximum compression. We also investigate the impact of alternate coding matrices on overlapping sequence design. Finally, we discuss an interesting application for overlapping gene design, namely the interleaving of an antibiotic resistance gene into a target gene inserted into a virus or plasmid for amplification.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.