Abstract

This study investigated the human ability to discriminate the motion direction of sequentially presented depth patterns produced by random-dot stereograms. The stereoscopic (cyclopean) patterns used here consisted of 256 rectangle patches, each of which had an alternative depth position (near or far). Two successive frames of correlated depth patterns made impressions of lateral motion when the pattern position in the second frame shifted laterally. The density of the patches that were near was varied. The D max that was measured using the 2AFC method was short when the density was high. The effect of depth reversing in the second frame was also tested. Under low density conditions, the performance was still good against reversing 3-D polarity. However, when the density was high, with depth reversal, motion in the reversed direction was perceived. Reversed motion was observed more often when SOA was small and when the density of near patches was near 1/2. Two strategies seem to exist in stereoscopic motion detecting: a polarity-independent process which matches figures, ignoring their depth polarity, and a polarity-dependent process which operates locally, ignoring 2-D shapes. The latter suggests the existence of a passive process in stereoscopic motion.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call