Abstract

Shearography is an interferometric technique capable of measuring the gradient of the displacement field. Shearography has also been used to determine out-of-plane displacement fields. In the latter case, conventional integration procedures are not the ideal method for determining the displacement field, as they are more susceptible to error propagation. In this work, two integration techniques are presented, the deconvolution technique and a new procedure called analytical integration, both are capable of determining the complete out-of-plane displacement. For the deconvolution technique, an appropriate kernel is proposed to process the sum of two shearography images with orthogonal shear directions. The analytical integration technique makes use of a weighted combination of two shearography images with different shear directions. The proposed techniques were applied to simulated and experimental shearography images obtained in a controlled experiment using a circular aluminum sample. Both techniques showed results with errors lower than 6% compared to the reference displacements.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.