Abstract

To determine the expression of the insulin-like growth factors (IGFs) and the IGF-I receptor in primitive neuroectodermal tumor cell lines and to assess the importance of these proteins in the growth of cell lines in vitro. Ribonucleic acid blotting and reverse transcriptase-polymerase chain reaction were used for detection of IGF and IGF-I expression. Ribonucleic acid blotting was used for detection of up-regulation of c-fos in the presence of exogenous growth factor. Immunoprecipitation was used to demonstrate autophosphorylation of the receptor in the presence of exogenous growth factor. Ligand binding analysis was used to determine the binding affinity of the receptor and the number of receptors per cell. Growth of curves in the presence of monoclonal antibody that blocks binding of ligand to receptor was measured to determine the requirement for an activated receptor during growth. Expression of IGF-II was identified in one cell line. No expression of IGF-I was seen in any cell line. Expression of IGF-I receptor was detected in all three cell lines. Immunoprecipitation experiments demonstrated autophosphorylation of the receptor after addition of IGF-I to growing cells. Ligand binding analysis revealed 9.2 x 10(4) and 4 x 10(4) receptors per cell in the Daoy and PFSK cell lines, respectively. Addition of either IGF alone or in combination to serum-starved cells was not able to restore growth of the cell lines. A blocking monoclonal antireceptor antibody decreased growth of Daoy and PFSK cells in a dose-dependent fashion. Complete arrest of growth occurred at 1 microgram/ml antibody in both cell lines. The IGF-I receptor is expressed by primitive neuroectodermal tumor cell lines in vitro. An activated receptor is important for cell proliferation in vitro. Additional work will establish the importance of these findings for tumors in vivo.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.