Abstract
Static and discrete time pricing operators for two price economies are reviewed and then generalized to the continuous time setting of an underlying Hunt process. The continuous time operators define nonlinear partial integro-differential equations that are solved numerically for the three valuations of bid, ask and expectation. The operators employ concave distortions by inducing a probability into the infinitesimal generator of a Hunt process. This probability is then distorted. Two nonlinear operators based on different approaches to truncating small jumps are developed and termed QV for quadratic variation and NL for normalized Levy. Examples illustrate the resulting valuations. A sample book of derivatives on a single underlier is employed to display the gap between the bid and ask values for the book and the sum of comparable values for the components of the book.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.