Abstract
The effect of two widely used polyphenols, curcumin and EGCG was investigated on the amyloid fibrillogenesis of the well-characterized model protein human lysozyme (HuL), associated with non-neuropathic systemic amyloidosis, towards exploring their efficacy as modulators of HuL amyloid aggregation and toxicity and unravelling their mechanism of action. Curcumin exerts its inhibitory influence towards HuL fibrillation by interacting with the prefibrillar and fibrillar intermediates resulting in complete suppression of fibrillation at ∼200 µM and effectively disaggregates preformed fibrils of HuL. EGCG on the other hand suppresses fibrillation only upto 70% at ∼400 µM, modulates the pathway towards large, β-sheet rich amyloid fibril-like aggregates and modifies the preformed fibrils into similar type of large, clustered aggregate assemblies. The overall surface hydrophobicity and cytotoxicity of HuL is significantly reduced not only in the presence of curcumin but also EGCG, despite the latter forming large agglomerates, which could be accounted for by the dense and highly clustered nature of aggregates rendering their surface less exposed and thus less amenable to interact with cellular entities thereby causing reduced cellular toxicity. This study highlights the differential mechanisms employed by curcumin and ECCG in modulating the fibrillation pathway of HuL and illustrates the importance of overall modulation of fibrillation towards a general reduction in toxicity, rather than specifically focusing only on inhibition of fibrillation. This study also demonstrates how two widely different polyphenols employ disparate mechanisms to modulate the fibrillation pathway of a single protein and yet converge towards a common effect of alleviation of cytotoxicity.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.