Abstract

Recent advances in string theory have highlighted the need for reliable numerical methods to calculate correlators at strong coupling in supersymmetric theories. We present a calculation of the correlator <0|T^{++}(r)T^{++}(0)|0> in N=1 SYM theory in 2+1 dimensions. The numerical method we use is supersymmetric discrete light-cone quantization (SDLCQ), which preserves the supersymmetry at every order of the approximation and treats fermions and bosons on the same footing. This calculation is done at large $N_c$. For small and intermediate r the correlator converges rapidly for all couplings. At small r the correlator behaves like 1/r^6, as expected from conformal field theory. At large r the correlator is dominated by the BPS states of the theory. There is, however, a critical value of the coupling where the large-r correlator goes to zero, suggesting that the large-r correlator can only be trusted to some finite coupling which depends on the transverse resolution. We find that this critical coupling grows linearly with the square root of the transverse momentum resolution.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.