Abstract
A formula for computing the resistance between any two vertices in the stellated graph of a regular graph is obtained. It turns out that the two-point resistance of the stellated graph can be expressed in terms of the two-point resistance of the original graph. As a consequence, the Kirchhoff index (i.e. the sum of the effective resistances between all pairs of vertices) for the stellated graph is obtained, which extends the previously known result. The correspondence between random walks and electric networks is then used to obtain the mean first passage time and mean commute time for random walks on stellated graphs.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Journal of Physics A: Mathematical and Theoretical
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.