Abstract

Based on the two-point Hermite interpolation technique, the paper proposes a two-point generalized Hermite interpolation and its inversion in terms of weight functions. We prove that upon combining fourth-order optimal iterative scheme to the double Newton’s method (DNM), we can yield a generalized Hermite interpolation formula to relate the first-order derivatives at two points, and the converse is also true. Resorted on the DNM and the derived formula for the generalized inverse Hermite interpolation, some new third-order iterative schemes of quadrature type are constructed. Then, the fourth-order optimal iterative schemes are devised by using a double-weight function. A functional recursion formula is developed which can generate a sequence of two-point generalized Hermite interpolations for any two given weight functions with certain constraints; hence, a more general class of fourth-order optimal iterative schemes is developed from the functional recursion formula. The constructions of fourth-order optimal iterative schemes by using the techniques of double-weight function and the recursion formula obtained from a single weight function are appeared in the literature at the first time. The novelties involve deriving a two-point generalized Hermite interpolation and its inversion in terms of weight functions subjected to two conditions and through the recursion formula, relating the DNM to the third-order iterative schemes by the inverse Hermite interpolation, formulating a functional recursion formula, deriving a broad class fourth-order optimal iterative schemes through double-weight functions rather than the previous technique with a single-weight function, and finding that the new double-weight function and the newly developed fourth-order optimal iterative schemes are inclusive being convergent faster and competitive to other iterative schemes.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call