Abstract

Polygonal lines are used for the paths of the gluon field phase factors entering in the definition of gauge invariant quark Green's functions. This allows classification of the Green's functions according to the number of segments the polygonal lines contain. Functional relations are established between Green's functions with polygonal lines with different numbers of segments. An integrodifferential equation is obtained for the quark two-point Green's function with a path along a single straight line segment where the kernels are represented by a series of Wilson loop averages along polygonal contours. The equation is exactly and analytically solved in the case of two-dimensional QCD in the large-Nc limit. The solution displays generation of an infinite number of dynamical quark masses accompanied with branch point singularities that are stronger than simple poles. An approximation scheme, based on the counting of functional derivatives of Wilson loops, is proposed for the resolution of the equation in four dimensions.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.