Abstract

We present a review of the one-loop photon ($\Pi$) and neutrino ($\Sigma$) two-point functions in a covariant and deformed $\rm U(1)$ gauge-theory on the 4-dimensional noncommutative spaces, determined by a constant antisymmetric tensor $\theta^{\mu\nu}$, and by a parameter-space $(\kappa_f,\kappa_g)$, respectively. For the general fermion-photon $S_f(\kappa_f)$ and photon self-interaction $S_g(\kappa_g)$ the closed form results reveal two-point functions with all kind of pathological terms: the UV divergence, the quadratic UV/IR mixing terms as well as a logarithmic IR divergent term of the type $\ln(\mu^2(\theta p)^2)$. In addition, the photon-loop produces new tensor structures satisfying transversality condition by themselves. We show that the photon two-point function in the 4-dimensional Euclidean spacetime can be reduced to two finite terms by imposing a specific full rank of $\theta^{\mu\nu}$ and setting deformation parameters $(\kappa_f,\kappa_g)=(0,3)$. In this case the neutrino two-point function vanishes. Thus for a specific point $(0,3)$ in the parameter-space $(\kappa_f,\kappa_g)$, a covariant $\theta$-exact approach is able to produce a divergence-free result for the one-loop quantum corrections, having also both well-defined commutative limit and point-like limit of an extended object.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call