Abstract
In fringe projection profilometry based on temporal phase unwrapping, determining a fringe order map commonly requires a large number of fringes. To reduce the fringe number, this paper proposes a concise absolute phase retrieval algorithm just by projecting four fringes. The first two orthogonal fringes with relatively large frequency can collect reliable height information. The second two fringes are designed the same as the first two, but the only difference is that each 2π-phase of them is shifted by a unique amount, which can robustly label a large number of fringe orders. For decoding the fringes, we develop an average intensity one-time extraction algorithm, which allows for the rapid acquisition of the two pairs of alternating current components. From this, the wrapped phase containing height information and the stair-coded phase providing fringe orders can be directly extracted by arctangent operation in a point-to-point manner. Furthermore, we also develop a universal fringe order correction algorithm that can simultaneously correct the common errors and the misalignment between the wrapped phase and fringe orders. Experiment results demonstrate that this method achieves comparable accuracy and adaptability to the phase-coding method, while utilizing two fewer fringes.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.