Abstract

AbstractWe consider a two-player zero-sum stochastic differential game with a random planning horizon and diffusive state variable dynamics. The random planning horizon is a function of a non-negative continuous random variable, which is assumed to be independent of the Brownian motion driving the state variable dynamics. We study this game using a combination of dynamic programming and viscosity solution techniques. Under some mild assumptions, we prove that the value of the game exists and is the unique viscosity solution of a certain nonlinear partial differential equation of Hamilton–Jacobi–Bellman–Isaacs type.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.