Abstract

We study how we can understand the change of the spectral function and the pole location of the correlation function for sigma at finite temperature, which were previously obtained in the linear sigma model with a resummation technique called optimized perturbation theory. There are two relevant poles in the sigma channel. One pole is the original sigma pole which shows up as a broad peak at zero temperature and becomes lighter as the temperature increases. The behavior is understood from the decreasing of the sigma condensate, which is consistent with the Brown-Rho scaling. The other pole changes from a virtual state to a bound state of pion-pion as the temperature increases which causes the enhancement at the pion-pion threshold. The behavior is understood as the emergence of the pion-pion bound state due to the enhancement of the pion-pion attraction by the induced emission in medium. The latter pole, not the former, eventually degenerates with pion above the critical temperature of the chiral transition. This means that the observable "sigma" changes from the former to the latter pole, which can be interpreted as the level crossing of "sigma" and pion-pion at finite temperature.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.