Abstract

A fluorescence correlation spectroscopy experiment that combines two-photon excitation and a standing-wave interference pattern is presented. The experimental correlation function can be analyzed using a simple expression involving (1) an exponential decay with time constant tau(f), which reflects diffusion across the interference fringes, and (2) a longer-lived decay with time constant tau(omega), which reflects diffusion in and out of the focal spot. The diffusion of Rhodamine 110 in water and ethylene glycol is measured using this method. The ability to simultaneously measure diffusion on two different time and lengthscales makes this experiment especially useful in environments where anomalous diffusion is suspected.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.