Abstract

We developed a new method to calculate two-photon processes in quantum mechanics that replaces the infinite summation over the intermediate states by a perturbation expansion. This latter consists of a series of commutators that involve position, momentum and hamiltonian quantum operators. We analyzed several single- and many-particle cases for which a closed form solution to the perturbation expansion exists, as well as more complicated cases for which a solution is found by convergence. Throughout the article, Rayleigh and Raman scattering are taken as examples of two-photon processes. The present method provides a clear distinction between the Thomson scattering, regarded as classical scattering, and quantum contributions. Such a distinction let us derive general results concerning light scattering. Finally, possible extensions to the developed formalism are discussed.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.