Abstract

The theory of two-photon photoacoustic calorimetry (PAC) is developed for the case of a homogeneously irradiated volume and it is shown that the laser-intensity dependence of the photoacoustic signals can be used to determine the molar absorption coefficient of transient species. The application of the method is illustrated via the measurement of the absorption coefficients of benzophenone and acetophenone triplets using a front-face PAC cell. The very high sensitivity exhibited by this cell strongly recommends the inclusion of laser-intensity dependence studies in the procedure for measuring heat depositions. Only extrapolation to zero laser intensity can afford reliable enthalpies of formation for very short-lived species.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.