Abstract

We study the transmission spectra of a Bose Einstein condensate (BEC) confined in an optical lattice interacting with two modes of a cavity via nonlinear two-photon transition. In particular, we show that the one-photon and two-photon cavity transmission spectra of a BEC are different. We found that when the BEC is in the Mott state, the usual normal mode splitting present in the one-photon transition is missing in the two-photon interaction. When the BEC is in the superfluid state, the transmission spectrum shows the usual multiple lorentzian structure. However the separation between the lorentzians for the two-photon case is much larger than that for the one-photon case. This study could form the basis for nondestructive high resolution Rydberg spectroscopy of ultracold atoms or two-photon spectroscopy of a gas of ultracold atomic hydrogen.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call