Abstract
In recent decades, there has been considerable interest in using photochemistry to produce biomaterials, owing to their ability to be used in the presence of biological material. Two-photon-induced photoreactions have been used to produce materials for optical data storage and microfabrication and, recently, researchers have exploited two-photon-induced chemical processes to create biomaterials. Researchers have used two-photon-induced lithography to fabricate hydrogels with well-defined chemical and physical properties in 3D through network polymerization, functionalization, uncaging and degradation, as described in this article. Fabrication and modification of chemical and physical architecture of biomaterials in 3D with submicron resolution will allow the elucidation of more complex relationships in cell behavior and tissue development and introduce pathways to engineering complex tissues.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.