Abstract

AbstractBiological activities take place in 3D environments, where cells interact in various directions in a defined, often microstructured, space. A sub‐millimeter‐sized stretching device is developed to mechanically stimulate a structurally restricted, soft multicellular microenvironment to investigate the effect of defined cyclic mechanical forces on a multicellular system. It consists of a multi‐material 3D microstructure made of Polydimethylsiloxane (PDMS) and gelatine‐based hydrogel, which is printed using the 2‐photon polymerization (2PP) method. The printed structures are first characterized microscopically and mechanically to study the effect of different printing parameters. Using 2PP, organotypic cell cultures are then directly printed into the hydrogel structures to create true 3D cell culture systems. These systems are mechanically stimulated with a cantilever by indenting at defined positions. The cells in the 3D organotypic cell culture change morphology and actin orientation when exposed to cyclic mechanical stretch, even within short timescales of 30 min. As proof of concept, a Medaka retinal organoid is encapsulated in the same structure to demonstrate that even preformed organoids can be stimulated by this method. The results highlight the capability of 2PP for manufacturing multifunctional soft devices to mechanically control multicellular systems at micrometer resolution and thus mimic mechanical stresses as they occur in vivo.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.