Abstract

We report two-photon interference experiments performed with correlated photon pairs generated via spontaneous four-wave mixing in a Doppler-broadened atomic ensemble involving the 5S1/2-5P3/2-5D5/2 transition of 87Rb atoms. When two photons with different wavelengths are incident on a polarization-based Michelson interferometer, two kinds of two-photon superposition states, the frequency-entangled state and dichromatic path-entangled state depending on whether the two photons are in different paths or in the same path, are probabilistically generated within the interferometer arms. Hong-Ou-Mandel-type interference fringes resulting from the frequency-entangled state are observed over the range of the single-photon coherence length, following introduction of a coarse path-length difference between the two interferometer arms and employing phase randomization. When the interferometer is highly phase-sensitive without phase randomization, a phase super-resolved fringe arising from the dichromatic path-entangled state is observed, both with and without the accompanying one-photon interference fringes.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call