Abstract

Abstract The generation of indistinguishable photons is a key requirement for solid-state quantum emitters as a viable source for applications in quantum technologies. Restricting the dimensions of the solid-state host to a size well below the wavelength of light emitted by a defect-center enables efficient external optical coupling, for example, for hybrid integration into photonic devices. However, stringent restrictions on the host dimensions result in severe limitations on the spectral properties reducing the indistinguishability of emitted photons. Here, we demonstrate two-photon interference from two negatively charged silicon-vacancy centers located in remote nanodiamonds. The Hong–Ou–Mandel interference efficiency reaches 61 % with a coalescence time window of 0.35 ns. We furthermore show a high yield of pairs of silicon-vacancy centers with indistinguishable optical transitions. Therefore, our work opens new paths in hybrid quantum technology based on indistinguishable single-photon emitters in nanodiamonds.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.