Abstract

Resonant two-photon emission of an electron in the weak field of a pulsed laser wave is studied theoretically. The assumption that a laser pulse duration is significantly greater than the characteristic oscillation time is used. It is shown that resonant conditions depend considerably on the energy and the angle of initial-electron incidence. These values determine the possible ranges of emission angles and frequencies of the first and second photon. An analytic expression for the resonant rate of the investigated process was obtained for a range of weak fields. The resonant rate decreases with increasing energy and decreases with the initial-electron incidence angle. It has order of magnitude for and for .

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call