Abstract

Electromagnetically-induced transparency (EIT) in a cascade three-level scheme is studied in rubidium vapour using continuous-wave titanium sapphire lasers. A counter-propagating experimental configuration significantly reduces the coupling laser power requirements and a reduction in absorption of over 90% is observed. The hyperfine structure of the upper level is seen within the EIT feature and the application of EIT to high-resolution two-photon spectroscopy is discussed. Simultaneous measurements of the excitation to the upper state are presented and clearly show Autler-Townes splitting and power broadening.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.