Abstract
The problem of the evaluation of the two-photon decay width of excited states in hydrogen is considered. Two different approaches to the evaluation of the width including cascades channels are employed: the summation of the transition probabilities for various decay channels and the evaluation of the imaginary part of the Lamb shift. As application, the two-photon decay channels for the $3s$ level of the hydrogen atom are evaluated, including the cascade transition probability $3s\text{\ensuremath{-}}2p\text{\ensuremath{-}}1s$. An important role is assigned to the two-photon decays in astrophysics context, since processes of this kind provide a possibility for the decoupling of radiation and matter in the early universe. We demonstrate the ambiguity of separation of the ``pure'' two-photon contribution and criticize the existing methods for such a separation.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.