Abstract

The conformational changes associated with the aggregation of proteins are critical to the understanding of fundamental molecular events involved in early processes of neurodegenerative diseases. A detailed investigation of these processes requires the development of new approaches that allow for sensitive measurements of protein interactions. In this paper, we applied two-photon spectroscopy coupled with time-resolved fluorescence measurements to analyze amyloid peptide interactions through aggregation-dependent concentration effects. Labeled amyloid-beta peptide (TAMRA-Abeta1-42) was used in our investigation, and measurements of two-photon-excited fluorescence of the free and covalently conjugated peptide structure were carried out. The peptide secondary structure was correlated with a short fluorescence lifetime component, and this was associated with intramolecular interactions. Comparison of the fractional occupancy of the fluorescence lifetime measured at different excitation modes demonstrates the high sensitivity of the two-photon method in comparison to one-photon excitation (OPE). These results give strong justification for the development of fluorescence-lifetime-based multiphoton imaging and assays.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.