Abstract

Two-photon absorption in indirect gap semiconductors is a frequently encountered, but not well-understood phenomenon. To address this, the real-density matrix approach is applied to describe two-photon absorption in silicon through the excitonic response to the interacting fields. This approach produces an analytical expression for the dispersion of the two-photon absorption coefficient for indirect-gap materials and can be used to explain trends in reported experimental data for bulk silicon both old and new with minimal fitting.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.