Abstract
We study the dynamics of a system composed of two coupled cavities, each interacting with a single Rydberg atom. The interplay between Rydberg-Rydberg interaction and photon hopping enables the transition of the atoms from the collective ground state to the double Rydberg excitation state by individually interacting with the optical normal modes and suppressing the upconversion process between them. The atomic transition is accompanied by the two-photon absorption and emission of the normal modes. Since the energy level structure of the atom-cavity system is photon number dependent there is only a pair of states being in the two-photon resonance. Therefore, the system can act as a quantum nonlinear absorption filter through the nonclassical quantum process, converting coherent light field into a nonclassical state. Meanwhile, the vacuum field in the cavity inspires the Rydberg atoms to simultaneously emit two photons into the normal mode, resulting in obvious emission enhancement of the mode.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.