Abstract

Optical fiber microresonators have attracted considerable interest for acoustic detection because of their compact size and high optical quality. Here, we have proposed, designed, and fabricated a spring-based Fabry–Pérot cavity microresonator for highly sensitive acoustic detection. We observed two resonator vibration modes: one relating to the spring vibration state and the other determined by the point-clamped circular plate vibration mode. We found that the vibration modes can be coupled and optimized by changing the structure size. The proposed resonator is directly 3D printed on an optical fiber tip through two-photon polymerization and is used for acoustic detection and imaging. The experiments show that the device exhibits a high sensitivity and low noise equivalent acoustic signal level of 2.39 mPa/Hz1/2 at 75 kHz that can detect weak acoustic waves, which can be used for underwater object imaging. The results demonstrate that the proposed work has great potential in acoustic detection and biomedical imaging applications.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.