Abstract

The sum of squared score (SSU) and sequence kernel association test (SKAT) are the two good alternative tests for genetic association studies in case-control data. Both SSU and SKAT are derived through assuming a dose-response model between the risk of disease and genotypes. However, in practice, the real genetic mode of inheritance is impossible to know. Thus, these two tests might losepower substantially as shown in simulation results when the genetic model is misspecified. Here, to make both the tests suitable in broad situations, we propose two-phase SSU (tpSSU) and two-phase SKAT (tpSKAT), where the Hardy-Weinberg equilibrium test is adopted to choose the genetic model in the first phase and the SSU and SKAT are constructed corresponding to the selected genetic model in the second phase. We found that both tpSSU and tpSKAT outperformed the original SSU and SKAT in most of our simulation scenarios. Byapplying tpSSU and tpSKAT to the study of type 2 diabetes data, we successfully identified some genes that have direct effects on obesity. Besides, we also detected the significant chromosomal region 10q21.22 in GAW16 rheumatoid arthritis dataset, with P<10-6. These findings suggest that tpSSU and tpSKAT can be effective in identifying genetic variants for complex diseases in case-control association studies.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.