Abstract

Abstract The heat transfer and fluid flow performance of a hybrid jet plus multipass microchannel heat sink in two-phase operation is evaluated for the cooling of a single large area, 3.61 cm2, heat source. The two-layer branching microchannel heat sink is evaluated using HFE-7100 as the coolant at three inlet volumetric flow rates of 150, 300, and 450 ml/min. The boiling performance is highest for the flow rate of 450 ml/min with the maximum heat flux value of 174 W/cm2. Critical heat flux (CHF) was observed at two of the tested flow rates, 150 and 300 ml/min, before reaching the maximum operating temperature for the serpentine heater. At 450 ml/min, the heater reached the maximum allowable temperature prior to observing CHF. The maximum pressure drop for the heat sink is 34.1 kPa at a heat flux of 164 W/cm2. Further, the peak heat transfer coefficient value of the heat sink is 28,700 W/m2 K at a heat flux value of 174 W/cm2 and a flow rate of 450 ml/min. Finally, a validated correlation of the single device cooler is presented that predicts heat transfer performance and can be utilized in the design of multidevice coolers.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call