Abstract
Terry steam turbines are employed in the safety systems of many nuclear Boiling Water Reactors to drive pumps and provide cooling water to the nuclear reactor core. While the turbine efficiency is low, the more important feature is high reliability under off-normal conditions. An important aspect of reliability is the ability to function with two-phase steam-water injection into the turbine, as most likely occurred in the Fukushima Dai-ichi nuclear accidents. This study investigates the characteristics of a Terry turbine during air-water injection with gas mass fractions ranging from 1 (dry gas) to 0.05 (wet gas), to better understand the Terry turbine’s true operational capabilities and provide justification for extended Terry turbine use for reactor safety. Other parameters investigated are the inlet pressure, the exhaust backpressure and the turbine’s rotational speed. The turbine performance is presented in terms of dynamometer loading and pump performance change as functions of the gas mass fraction.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.