Abstract
A two-phase continuum model for an isotropic mushy zone is presented. The model is based upon the general volume-averaged conservation equations, and quantities associated with hot tearing are included, i.e., after-feeding of the liquid melt due to solidification shrinkage is taken into account as well as thermally induced deformation of the solid phase. The model is implemented numerically for a one-dimensional model problem with some similarities to the aluminium direct chill (DC) casting process. The variation of some key parameters that are known to influence the hot-tearing tendency is then studied. The results indicate that both liquid pressure drop due to feeding difficulties and tensile stress caused by thermal contraction of the solid phase are necessary for the formation of hot tears. Based upon results from the one-dimensional model, it is furthermore concluded that none of the hot-tearing criteria suggested in the literature are able to predict the variation in hot-tearing susceptibility resulting from a variation in all of the following parameters: solidification interval, cooling contraction of the solid phase, casting speed, and liquid fraction at coherency.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.