Abstract
Digital microfluidics provides precise control of a single microdroplet, producing more opportunities for bio-molecule studies, chemical reaction and optofluidics applications. By manipulating the surface of droplets, light can be focused, scattered, or reflected toward different positions. We build a model of electro-responsive optical microfluidic system, operated based on the electrowetting mechanism, which can split or push droplets moving within a microwell. The initial close state and operated open state in a single microwell displays the color of a dye oil droplet and the substrate, respectively, represented as the dark and bright pixel in the display board. Our results indicate that the microdroplets interface could be successfully deformed and moved towards different directions within a short period of time.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.