Abstract

High-order harmonic generation (HHG) provides scalable sources of coherent extreme ultraviolet radiation with pulse duration down to the attosecond time scale. Efficient HHG requires the constructive interplay between microscopic and macroscopic effects in the generation volume, which can be achieved over a large range of experimental parameters from the driving field properties to those of the generating medium. Here, we present a systematic study of the harmonic yield as a function of gas pressure and medium length. Two regimes for optimum yield are identified, supporting the predictions of a recently proposed analytical model. Our observations are independent on the focusing geometry and, to a large extent, on the pulse duration and laser intensity, providing a versatile approach to HHG optimization.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.