Abstract

ABSTRACT The electrolyzing and fuel cell (FC) modes appear in a unitized regenerative FC. Understanding the operating condition impacts on the dynamic behaviors during mode-switching procedure facilitates better handling of cell working states and increasing the performance behaviors. In the present paper, a two-dimensional transient numerical model is employed to discuss the influence of operating conditions on two-phase species distributions when switching the cell mode into FC. According to the numerical results, it is concluded that when the cell switches from electrolytic cell to the mode of FC, reducing the operating cell voltage can significantly improve the cell performance. At the same time, concentration polarization and temperature heterogeneity are serious. Increasing the gas inlet velocity can improve the cell performance. Providing the reaction gas with the same concentration as the FC mode in advance can improve the temperature uniformity and cell current density values when starting switching the mode but hardly impacts the parameter value and currents after stabilization.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call