Abstract
To minimize flow boiling instabilities in two-phase heat sinks, two different types of microporous coatings were developed and applied on mini- and small-channel heat sinks and tested using degassed R245fa refrigerant. The first coating was epoxy based and was sprayed on heat sink channels, while the second coating was formed by sintering copper particles on heat sink channels. Minichannel heat sinks had overall dimensions 25.4 mm × 25.4 mm × 6.4 mm and 12 rectangular channels with a hydraulic diameter 1.7 mm and a channel aspect ratio of 2.7. Small-channel heat sinks had the same overall dimensions, but only three rectangular channels with hydraulic diameter 4.1 mm and channel aspect ratio 0.6. The microporous coatings were found to minimize parallel channel instabilities for minichannel heat sinks and to reduce the amplitude of heat sink base temperature oscillations from ∼6°C to slightly more than 1°C. No increase in pressure drop or pumping power due to the microporous coating was measured. The minichannel heat sinks with porous coating had on average 1.5 times higher heat transfer coefficient than uncoated heat sinks. Also, the small-channel heat sinks with the “best” porous coating had on average 2.5 times higher heat transfer coefficient and the critical heat flux was 1.5 to 2 times higher compared with the uncoated heat sinks.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.