Abstract

Proton Exchange Membrane (PEM) electrolysis is a promising technology for large industrial-scale hydrogen production, but it faces limitations due to mass transport and electrical transfer issues in the anode Porous Transport Layer (PTL). The optimal porosity and pore size of the PTL contributes to efficient water, gas, and electron transport. In this work, the water/gas counter-current flow through the PTL was studied by both experiment and modeling. Magnetic Resonance Imaging (MRI) is utilized to quantify water content within the porous layer during the two-phase flow for different gas and water inlet flow rates. The dependence of the saturation profile and bubble formation on the gas/water flow rates, water channel's orientation, flow direction is studied. To better understand the two-phase flow characteristics in the PTL, the phase-field model based on the Cahn-Hilliard theory for describing a diffuse interface is used to model the water and gas transport over 2D porous layer.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.