Abstract

This paper presents the results of simulations using a two-phase separated flow model to study the heat transfer and flow characteristics of refrigerants during evaporation in a horizontal tube. A one-dimensional annular flow model of the evaporation of refrigerants under constant heat flux is developed. The basic physical equations governing flow are established from the conservation of mass, energy and momentum. The model is validated by comparing it with the experimental data reported in literature. The present model can be used to predict the variation of the temperature, heat transfer coefficient and pressure drop of various pure refrigerants flowing along a horizontal tube. It is found that the refrigerant temperature decreases along the tube corresponding to the decreasing of its saturation pressure. The liquid heat transfer coefficient increases with the axial length due to the reducing thickness of the liquid film. The evaporation rate of liquid refrigerant tends to decrease with increasing axial length, due to the decreasing latent heat transfer through the liquid–vapor interface. The developed model can be considered as an effective tool for evaporator design and can be used to choose appropriate refrigerants under designed conditions.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.