Abstract

The evolution of a randomly perturbed interface between unbounded incompressible fluids undergoing Rayleigh–Taylor instability is analyzed numerically and theoretically. Two-dimensional simulation results, obtained with an interface tracking code, are presented and compared with a theoretical model based on Young’s two-phase flow description of the mixing process. The simplifications implied by self-similarity and by high drag enable simple analytic results to be obtained for the profiles of the average volume fractions and velocities of the two materials as a function of penetration depth. Agreement of the analytic results with the simulation data is demonstrated for a wide range of density ratios.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.