Abstract

We relate two problems which arise from different branches of mechanics of materials: construction of limiting phase transformation surfaces in strain space and stress–strain diagrams for stress-induced phase transitions and optimal design of two-phase 3D composites in the sense of minimizing its energy. In Antimonov et al. (Int J Eng Sci 98:153–182, 2015) for the case of isotropic phases, it was shown that given a new phase volume fraction and depending on average strain, the strain energy of a two-phase linear-elastic composite is minimized by either direct or inclined simple laminates, direct or skew second-rank laminates or third-rank laminates. Then these results were applied for the construction of direct and reverse transformations limiting surfaces in strain space for elastic solids undergoing phase transformations by additional minimization with respect to the new phase volume fraction and finding the strains at which minimizing volume fraction equals zero or one. In the present paper we construct stress–strain diagrams on various straining paths at which a material undergoes the phase transformation. We demonstrate that an additional degree of freedom—new phase volume fraction—may crucially result in instability of two-phase microstructures even if the microstructures are energy minimizers for composites with given volume fractions of phases. This in turn may lead to incompleteness of monotonic phase transformations and broken stress–strain diagrams. We study how such a behavior depends on a loading path and chemical energies of the phases.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call