Abstract

In this study, n-hexane was compressed beyond six times its critical pressure and discharged into argon at subcritical pressure (with respect to the injectant). The injection temperature systematically varied from sub- to supercritical values to investigate near-critical disintegration phenomena of retrograde jets. Here, the ratio of the pressure in the nozzle reservoir and chamber was always above 14 leading to highly-expanded injections. We analyzed the breakup process in terms of combined shadowgraphy and light scattering measurements. Close to the critical point, different physical mechanisms have been observed. Their occurrence is predominantly determined by the expansion process resulting from the thermodynamic conditions in nozzle reservoir and chamber in combination with thermodynamic properties of the injectant. The experimental images for near- but subcritical injection temperatures imply that a fluid in liquid state expands in the nozzle and atomizes downstream of it. For sufficiently low backpressures, high liquid superheats trigger rapid vapor formation across a thin transition layer inside the nozzle that leads to a choked two-phase flow. A thermodynamic model that assumes a discontinuous phase transition layer and uses metastable fluid properties provides a physical explanation of the resulting underexpanded two-phase disintegration downstream of the nozzle exit . An increase to supercritical injection temperatures increases the compressibility of the fluid within the nozzle. An isentropic flow analysis showed that this triggers choking at thermodynamic states in the supercritical pressure regime resulting in the discharge of a sonic single-phase fluid. The expansion within the Mach barrel can lead to a supersaturated fluid state at near-critical temperature. In this case, a sharp phase transition front established approximately half a nozzle diameter downstream of the exit. We defined a dimensionless parameter to characterize the two-phase extent in underexpanded jets with near-critical phase transition based on initial injection conditions and retrograde fluid properties. We deduced the axial extent of the two-phase region from light scattering signals for a wide parameter range and demonstrate that it features a clear dependency upon the proposed parameter, which demonstrates its feasibility.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.