Abstract
Two distinct hyperpolarizing responses are produced when histamine is iontophoretically applied onto the somal membranes of identified neurons within the cerebral ganglion of Aplysia: a biphasic response consisting of a rapid component (< 5sec) usually superimposed upon a slowly developing component; or a monophasic slowly developing response 5–20 sec in duration. The reversal potential values for the fast (typically −65 mV) and the slow (typically −89 mV) responses, and their shift to new values when the external potassium or chloride concentrations were altered, revealed that the fast and slow potentials are produced predominantly by conductance increases to chloride and potassium ions, respectively. The effects of histamine H 1- and H 2-receptor agonists and antagonists were studied to characterize the pharmacological properties of histamine receptors mediating these two ionically dissimilar hyperpolarizing responses. The slow potassium-dependent hyperpolarization could be mimicked by several histamine analogues; the most potent tested were the H 1-receptor agonist, 2-methylhistamine, and the H 2-receptor agonist, 4-methylhistamine. Neither of these agents mimicked the fast chloride-dependent histamine response. The slow potassium-dependent responses induced by histamine or histamine agonists were completely and reversibly blocked by the H 2-receptor antagonist, cimetidine. By contrast, the slow potassium-dependent hyperpolarizations produced by iontophoretically applied acetylcholine or by dopamine to the same neurons were unaffected by cimetidine. Other H 1 and H 2 antagonists tested were either ineffective, or only partially blocked the slow hyperpolarizations in a non-selective manner. The fast chloride-dependent hyperpolarizations were not selectively antagonized by any of the H 1 or H 2 reagents tested, although they were effectively suppressed by tubocurarine and strychnine. These data indicate that two pharmacologically distinct histamine receptors mediate potassium- and chloride-dependent hyperpolarizations in Aplysia neurons. Neither of these receptors, however, could be classified as strictly H 1 or H 2 according to criteria presently used in non-neuronal tissues. The selectivity and reversibility of cimetidine indicate that this particular antihistaminic could be a valuable pharmacological tool for defining putative histaminergic synapses in Aplysia and perhaps other nervous systems.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.