Abstract
Let G be a connected graph. A configuration of pebbles assigns a nonnegative integer number of pebbles to each vertex of G. A move consists of removing two pebbles from one vertex and placing one pebble on an adjacent vertex. A configuration is solvable if any vertex can get at least one pebble through a sequence of moves. The pebbling number of G, denoted π(G), is the smallest integer such that any configuration of π(G) pebbles on G is solvable. A graph has the two-pebbling property if after placing more than 2π(G)−q pebbles on G, where q is the number of vertices with pebbles, there is a sequence of moves so that at least two pebbles can be placed on any vertex. A graph has the odd-two-pebbling property if after placing more than 2π(G)−r pebbles on G, where r is the number of vertices with an odd number of pebbles, there is a sequence of moves so that at least two pebbles can be placed on any vertex. In this paper, we prove that the two-pebbling and odd-two-pebbling properties are not equivalent.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.