Abstract

We consider two two-level particles (qubits) as the working substances of measurement-based quantum heat engines. A measurement-based quantum heat engine is similar to a quantum Otto heat engine other than a quantum isochoric process is replaced by the quantum measurement. We discuss two identical Bosons case and two interacting particles case, respectively. For two Bosons, we find the efficiency is same to a single-particle case but the work output is enhanced. It tends to classical-like result in low temperature regime and exhibits strong quantum effects in high temperature regime, which is counterintuitive. For two interacting qubits, we show the work done is always suppressed by the coupling. The efficiency can be improved under certain conditions in local measurement case and is same to a single-particle case when Bell measurement is done.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.