Abstract

The paper studies the asymptotic behavior of the function for the area of the glottis near moments of its opening and closing for two mathematical voice source models. It is shown that in the first model, the asymptotics of the area function obeys a power law with an exponent of no less that 1. Detailed analysis makes it possible to refine these limits depending on the relative sizes of the intervals of a closed and open glottis. This work also studies another parametric model of the area of the glottis, which is based on a simplified physical-geometrical representation of vocal-fold vibration processes. This is a special variant of the well-known two-mass model and contains five parameters: the period of the main tone, equivalent masses on the lower and upper edge of vocal folds, the coefficient of elastic resistance of the lower vocal fold, and the delay time between openings of the upper and lower folds. It is established that the asymptotics of the obtained function for the area of the glottis obey a power law with an exponent of 1 both for opening and closing.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.