Abstract
This paper presents a bi-objective vendor managed inventory (BOVMI) model for a supply chain problem with a single vendor and multiple retailers, in which the demand is fuzzy and the vendor manages the retailers’ inventory in a central warehouse. The vendor confronts two constraints: number of orders and available budget. In this model, the fuzzy demand is formulated using trapezoidal fuzzy number (TrFN) where the centroid defuzzification method is employed to defuzzify fuzzy output functions. Minimizing both the total inventory cost and the warehouse space are the two objectives of the model. Since the proposed model is formulated into a bi-objective integer nonlinear programming (INLP) problem, the multi-objective evolutionary algorithm (MOEA) of non-dominated sorting genetic algorithm-II (NSGA-II) is developed to find Pareto front solutions. Besides, since there is no benchmark available in the literature to validate the solutions obtained, another MOEA, namely the non-dominated ranking genetic algorithms (NRGA), is developed to solve the problem as well. To improve the performances of both algorithms, their parameters are calibrated using the Taguchi method. Finally, conclusions are made and future research works are recommended.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.