Abstract

The transport statistics of the 1D chain and metallic armchair graphene nanoribbons with hopping disorder are studied, with a focus on understanding the crossover between the zero-energy critical point and the localized regime at larger energy. In this crossover region, transport is found to be described by a two parameter scaling with the ratio $s$ of system size to mean free path, and the product $r$ of energy and scattering time. This two parameter scaling shows excellent data collapse across a wide a variety of system sizes, energies, and disorder strengths. The numerically obtained transport distributions in this regime are found to be well described by a Nakagami distribution, whose form is controlled up to an overall scaling by the ratio $s/{|lnr|}^{2}$. For sufficiently small values of this parameter, transport appears virtually identical to that of the zero-energy critical point, while at large values, a Gaussian distribution corresponding to exponential localization is recovered. For intermediate values, the distribution interpolates smoothly between these two limits.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.